Linear IC Converter

CMOS

D/A Converter for Digital Tuning

MB40D001

- DESCRIPTION

The MB40D001 is an 8-bit D/A converter with 12 built-in channels. The 12 sets of analog outputs have built-in
OP amps to enable use with large current drive applications.
CS (chip select) data input/output format is used to enable connection to a serial bus. A built-in 12-bit I/O expander provides serial <=> parallel conversion (8 of the 12 bits are also used with analog output).
The MB40D001 can be adapted for microcontroller port expansion, or replacement of electronic volume control or semi-fixed calibration resistance.
Also, the MB40D001 is function- and pin-compatible with the MB88146A, for easy replacement when reducing sysytem operating voltage.

FEATURES

- Supply voltage 2.7 V to 3.6 V (Power consumption $0.7 \mathrm{~mW} / \mathrm{ch}$ typ.)
- Compact package: SSOP-24
- R-2R type 8-bit D/A converter with 12 built-in channels
- Built-in 12-bit I/O expander (8 of 12 bits also used with analog output)
- Built-in analog amplifier (sink current max. 0.4 mA , source current max. 1.0 mA)
- Built-in power-on detector circuit (detects $V c c D$ power-on, and performs initialization)
- Separate MCU interface power supply (VccD), OP amp supply (VccA), D/A converter supply VDD
- Analog output range 0 V to VccA .
- Serial data input/output operation to maximum of 2.5 MHz (1.5 MHz in cascade operation)
- CMOS process

PACKAGES

(FPT-24P-M03)

MB40D001

PIN ASSIGNMENT

(FPT-24P-M03)

MB40D001

PIN DESCRIPTION

Pin no.	Symbol	Description
1 to 4	AO_{1} to AO_{4}	D/A converter analog output pins (Vod-GND output). (Default state: \#00 setting level output)
5 to 12	$\mathrm{D}_{11} / \mathrm{AO}_{5}$ to $\mathrm{D}_{4} / \mathrm{AO}_{12}$	I/O expander parallel I/O pins (VccA/GND output 0.5 VccA/0.2 VccA input), also used as D/A converter analog output pins (VDD - GND output). Pin state is controlled by input data. See "Data Configuration". (Default state: Input mode, high-impedance state.)
13	$\mathrm{VDD}^{* 1}$	D / A converter reference power supply pin.

*1: Be sure that $\mathrm{V}_{\mathrm{cc}} \mathrm{A} \geq \mathrm{V}_{\mathrm{cc}} \mathrm{D}$, and that $\mathrm{V}_{\mathrm{cc}} \mathrm{A} \geq \mathrm{V}_{\mathrm{do}}$.
*2: Do not leave this pin in floating state.

MB40D001

BLOCK DIAGRAM

MB40D001

DATA CONFIGURATION

1. Data Configuration

2. Channel Select

D3	D2	D1	D0	
0	0	0	0	Don't Care/special function
0	0	0	1	AO_{1} selected
0	0	1	0	AO_{2} selected
to	to	to	to	to
1	0	1	1	AO_{11} selected
1	1	0	0	AO_{12} selected
1	1	0	1	I / O expander (serial \rightarrow parallel)
1	1	1	0	I / O expander (parallel \rightarrow serial)
1	1	1	1	Expander status register (ESR)

MB40D001

3. Setting Data

- Don't Care/special function (Channel select = "0000")

DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	Analog output voltage level
\times	0	0	0	0	Don't Care							
to	Don't Care											
\times	1	0	1	1	Don't Care							
0	0	0	0	0	0	0	0	1	1	0	0	GND (all channels)
0	0	0	0	0	0	0	1	1	1	0	0	Vod/256 $\times 1$ (all channels)
0	0	0	0	0	0	1	0	1	1	0	0	Vod/256 $\times 2$ (all channels)
to												
1	1	1	1	1	1	1	0	1	1	0	0	VDo/256 $\times 254$ (all channels)
1	1	1	1	1	1	1	1	1	1	0	0	VDo/256 $\times 255$ (all channels)
\times	1	1	0	1	High impedance (I/O expander state)*							
\times	1	1	1	0	Reset (state when power is ON)							
\times	1	1	1	1	Don't Care							

\times : Don't care *: Hi-Z output on all channels of AO_{5} through AO_{12}

- D/A Converter (Channel select = "0001" to "1100")

DF	DE	DD	DC	DB	DA	D9	D8	D7	D6	D5	D4	Analog output voltage level
0	0	0	0	0	0	0	0	0	0	0	0	GND
0	0	0	0	0	0	0	1	0	0	0	0	VDD/256 $\times 1$
0	0	0	0	0	0	1	0	0	0	0	0	VDD/256 $\times 2$
0	0	0	0	0	0	1	1	0	0	0	0	Vdo/256 $\times 3$
to												
1	1	1	1	1	1	0	1	0	0	0	0	VDo/256 $\times 253$
1	1	1	1	1	1	1	0	0	0	0	0	VDo/256 $\times 254$
1	1	1	1	1	1	1	1	0	0	0	0	VDo/256 $\times 255$
\times	0	0	0	1	High impedance (I/O expander state)*							
\times	0	0	1	0	Don't Care							
to	Don't Care											
\times	1	1	1	1	Don't Care							

x : Don't care *: Only AO5 through AO_{12} output is valid

MB40D001

- I/O Expander [Channel select = "1101"]: Serial \rightarrow Parallel Conversion

Performs parallel conversion of data bits D4 to DF for output on pins D_{0} to D_{11}.
Note that only those pins designated for output in the ESR (expander status register) are output.
Shift register

\Rightarrow| DF | DE | DD | DC | DB | DA | D 9 | D 8 | D | D 6 | D | D 4 | D 3 | D 2 | D 1 | D 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |\Rightarrow

$\begin{array}{lllllllllllll}D_{11} & D_{10} & D_{9} & D_{8} & D_{7} & D_{6} & D_{5} & D_{4} & D_{3} & D_{2} & D_{1} & D_{0} & \text { Parallel I/O pins (output state) }\end{array}$

- I/O Expander [Channel select $=$ "1110"]: Parallel \rightarrow Serial Conversion

Writes data from Do to D_{11} pins to bits D 4 to DF in the shift register.
Data is output to the SO pin on the shift clock (CLK) signal (The first 4 bits output data D0 to D3, so the converted output should be read as data bits 5 through 16.).
Note that the data value is " 0 " for pins designated for output in the ESR (expander status register) as well as analog output pins.

Shift register

\Rightarrow	DF	DE	DD	DC	DB	DA	D 9	D 8	D 7	D 6	D	D 4	D 3	D 2	D 1	D 0
\uparrow																
D_{11}	D_{10}	D_{9}	D_{8}	D_{7}	D_{6}	D_{5}	D_{4}	D_{3}	D_{2}	D_{1}	D_{0}	Parallel I/O pins (output state)				

- Expander Status Register [Channel select = "1111"]

Shift register

\Rightarrow| DF | DE | DD | DC | DB | DA | $\mathrm{D9}$ | D 8 | D 7 | D 6 | D 5 | D 4 | ESR |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | \downarrow |
| | D_{11} | D_{10} | D_{9} | D_{8} | D_{7} | D_{6} | D_{5} | D_{4} | D_{3} | D_{2} | D_{1} | D_{0} |

This register sets the status of each pin.

Setting	Pin status
$" 0 "$	- Input standby status (Hi-Z output) - D D11 to D4 pins used for analog output should be set to "0". $" 1 "$
• Output state	

MB40D001

Note: After power $\mathrm{V}_{c c} \mathrm{D}$ is turned ON (or after a reset), the state of pins and registers is as follows.

Pin	
AO_{1} to AO_{4}	"L" output
$\mathrm{D}_{11} / \mathrm{AO}_{5}$ to $\mathrm{D}_{4} / \mathrm{AO}_{12}$	$\mathrm{Hi}-\mathrm{Z}$ state (input state)
D_{3} to D_{0}	$\mathrm{Hi}-\mathrm{Z}$ state (input state)

Register	State
Shift register	Bits DF to D8 are "0," and D7 to D0 are not defined (retain prior state).
D/A register	All reset to "0".
Parallel output register	Not defined (retain prior state).
Expander status register (ESR)	All reset to "0".

- ESR settings have priority in determining pin states. Switching between input standby state and analog output state is enabled even when the ESR value is " 1 ". When the ESR value returns to " 0 ", the pin returns to its previously defined state.
In input standby state with AO set for Hi-Z output, the AO output setting can be used for transition to AO output state.

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Conditions	Rating		Unit
			Min.	Max.	
Power supply voltage	VccA	Based on GND$\left(\mathrm{Ta}=+25^{\circ} \mathrm{C}\right)$	-0.3	+7.0	V
	VccD		-0.3	+7.0	V
	Vdd		-0.3	VccA*	V
Input voltage 1	Vin1	SI, CLK, $\overline{\mathrm{CS}}$, SO, Do to D3	-0.3	Vcc D +0.3	V
Output voltage 1	Vout1		-0.3	$\mathrm{VccD}+0.3$	V
Input voltage 2	$\mathrm{V}_{\text {in }} 2$	D_{4} to D_{11}	-0.3	$\mathrm{Vcc} A+0.3$	V
Output voltage 2	Vout2		-0.3	$\mathrm{VccA}+0.3$	V
Power consumption	PD	-	-	250	mW
Operating temperature	Ta	-	-20	+85	${ }^{\circ} \mathrm{C}$
Storage temperature	$\mathrm{T}_{\text {stg }}$	-	-55	+150	${ }^{\circ} \mathrm{C}$

* $: ~ V c c A \geq V_{D D}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

■ RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Power supply voltage	VccA	-	2.7	3.0	3.6	V
	VccD	-	2.7	-	3.6	V
	VDD	$\mathrm{V}_{\mathrm{CC}} \mathrm{A} \geq \mathrm{V}_{\mathrm{DD}}$	2.0	-	VccA	V
	GND	-	-	0	-	V
Analog output current	$\mathrm{l}_{\text {AL }}$	Source current	-	-	1.0	mA
	IAH	Sink current	-	-	0.4	mA
Oscillation limit output capacity	Col	-	-	-	1.0	$\mu \mathrm{F}$
Operation temperature	Ta	-	-20	-	+85	${ }^{\circ} \mathrm{C}$

Note: Data in registers is retained in standby mode (digital supply: VccD voltage, analog supply: GND).
WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

ELECTRICAL CHARACTERISTIC

1. DC Characteristics

(1) Digital section

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	V cc D	VccD	-	2.7	3.0	3.6	V
Power supply current	IccD		CLK $=1 \mathrm{MHz}$, (Unloaded)	-	0.1	0.35	mA
Standby current	IccS		$\begin{aligned} & \text { CLK, SI, } \overline{\text { CS }} \text { Stop } \\ & \mathrm{V}_{\text {in }}=\mathrm{V}_{\mathrm{cc}} \mathrm{D} \text { or } \\ & \text { GND } \end{aligned}$	-10	-	+10	$\mu \mathrm{A}$
Input leak current	ILкк	$\begin{aligned} & \text { CLK, SI, } \\ & \overline{C S}, \\ & D_{0} \text { to } D_{3} \end{aligned}$	$\mathrm{V}_{\text {in }}=0$ to VccD	-10	-	+10	$\mu \mathrm{A}$
"H" level input voltage	V_{HH}		-	$0.5 \times \mathrm{VccD}$	-	-	V
"L" level input voltage	VL1		-	-	-	$0.2 \times \mathrm{VccD}$	V
Output high-impedance leakage current	lock	SO	$\mathrm{V}_{\text {in }}=0$ to $\mathrm{V}_{\mathrm{cc}} \mathrm{D}$	-10	-	+10	$\mu \mathrm{A}$
"H" level output voltage	Voh1	$\begin{gathered} \mathrm{SO}, \\ \mathrm{D}_{0} \text { to } \mathrm{D}_{3} \end{gathered}$	$\mathrm{loH}=-0.4 \mathrm{~mA}$	VccD-0.4	-	-	V
"L" level output voltage	Volı		$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.4	V

(2) D/A converter section

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	VDD	Vod	$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{CC}} \mathrm{A}$	2.0	3.0	3.6	V
Power supply current	lod		$\mathrm{V}_{\mathrm{DD}} \leq \mathrm{V}_{\mathrm{CC}} \mathrm{A}$	-	0.7	1.9	mA
Resolution	Res	AO_{1} to AO_{12}	Unloaded	-	8	-	bit
Monotonic increase	Rem			-	8	-	bit
Nonlinearity error	LE			-1.5	-	+1.5	LSB
Differential linearity error	DLE			-1.0	-	+1.0	LSB

Nonlinearity error: Deviation (error) in input/output curves with respect to an ideal straight line connecting output voltage at " 05 " and output voltage at "FA".

Differential linearity error:

Deviation (error) in amplification with respect to theoretical increase in amplification per 1-bit increase in digital value.

Note:The value of $V_{A O H}$ and $V_{D D}$, and the value of $V_{A O L}$ and $G N D$ are not necessarily equivalent.
(3) Operational Amplifier/Analog output section

Parameter	Symbol	Pin name	Conditions	Value			Unit
				Min.	Typ.	Max.	
Power supply voltage	V cCA		-	2.7	3.0	3.6	V
Power supply current	Icca	Vcca	\#80 setting (Unloaded)	-	1.0	4.8	mA
Input leakage current	IILK2	D_{4} to D_{11}	$\mathrm{V}_{\text {in }}=0$ to Vcca	-10	-	+10	$\mu \mathrm{A}$
" H " level digital input voltage	$\mathrm{V}_{\mathbf{H} 2}$		-	$0.5 \times \mathrm{Vcc} A$	-	-	V
"L" level digital input voltage	VIL2		-	-	-	$0.2 \times \mathrm{VccA}$	V
" H " level digital output voltage	Voh2		$\mathrm{loH}=-0.4 \mathrm{~mA}$	VccA-0.4	-	-	V
"L" level digital output voltage	Vol2		$\mathrm{loL}=2.5 \mathrm{~mA}$	-	-	0.4	V
Analog output minimum voltage 1	$V_{\text {AOL1 }}$	AO_{1} to AO_{12}	$\begin{aligned} & \mathrm{I}_{\mathrm{AL}}=0 \mathrm{~A} \\ & \# 00 \text { setting } \\ & \hline \end{aligned}$	GND	-	0.1	V
Analog output minimum voltage 2	$V_{\text {AOL2 }}$		$\begin{aligned} & 1 \mathrm{AL}=0.5 \mathrm{~mA} \\ & \# 00 \text { setting } \end{aligned}$	-0.2	GND	0.2	V
Analog output minimum voltage 3	$V_{\text {AOL3 }}$		$\begin{aligned} & \mathrm{I}_{\mathrm{AH}}=0.4 \mathrm{~mA} \\ & \# 00 \text { setting } \end{aligned}$	GND	-	0.15	V
Analog output minimum voltage 4	$V_{\text {AOL4 }}$		$\begin{aligned} & 1 \mathrm{AL}=1.0 \mathrm{~mA} \\ & \# 00 \text { setting } \end{aligned}$	-0.3	GND	0.3	V
Analog output maximum voltage 1	$V_{\text {AOH1 }}$	AO_{1} to AO_{12}	$\begin{aligned} & \mathrm{IAL}=0 \mathrm{~A} \\ & \text { \#FF setting } \\ & \hline \end{aligned}$	VccA-0.1	-	VccA	V
Analog output maximum voltage 2	$\mathrm{V}_{\text {AOH2 }}$		$\begin{aligned} & 1 \mathrm{AL}=0.5 \mathrm{~mA} \\ & \# F \mathrm{~F} \text { setting } \end{aligned}$	VccA-0.2	-	VccA	V
Analog output maximum voltage 3	$V_{\text {Аонз }}$		$I_{A H}=0.4 \mathrm{~mA}$ \#FF setting	VccA-0.15	VccA	$\mathrm{V} c \mathrm{c} A+0.15$	V
Analog output maximum voltage 4	$V_{\text {AOH4 }}$		$\begin{aligned} & 1 \mathrm{AL}=1.0 \mathrm{~mA} \\ & \text { \#FF setting } \end{aligned}$	VccA-0.3	-	VccA	V

Note: IAн: Analog output sink current IAL: Analog output source current

2. AC Characteristics

Parameter	Symbol	Conditions	Value			Unit
			Min.	Typ.	Max.	
Clock "L" level pulse width	tckL	-	200	-	-	ns
Clock "H" level pulse width	tскн	-	200	-	-	ns
Clock rise time	tor	-	-	-	200	ns
Clock fall time	tct	-	-	-	200	ns
Serial input setup time	tssu	-	30	-	-	ns
Serial input hold time	tsho	-	60	-	-	ns
Serial output delay time	tsod	See "Load condition 1"*	0	120	300	ns
$\overline{\mathrm{CS}}$ input setup time	tcsu	-	100	-	-	ns
$\overline{\mathrm{CS}}$ hold time	tcch	-	200	-	-	ns
$\overline{\text { CS }}$ "H" level hold time	tcs	-	100	-	-	ns
Data output enable time	tso	-	-	-	200	ns
Data output float time	tsoz	-	-	-	200	ns
Parallel input setup time	tpsu	-	30	-	-	ns
Parallel input hold time	tpho	-	60	-	-	ns
Parallel output delay time	tpod	See "Load condition 1"	-	120	300	ns
Analog output delay time	taod	See "Load condition 2"	-	30	100	$\mu \mathrm{S}$
Power supply rise time	tr	-	-	-	50	ms
Power-on reset non-startup power supply variation	$\Delta \mathrm{V}_{\mathrm{R}}$	-	-10	-	10	V/ $\mu \mathrm{s}$

* : Cascade connection enabled at 1.5 MHz .

Load Conditions

- Load condition 1

- Load condition 2

- Input/Output Timing ($\overline{\mathrm{CS}}$ method)

CLK, SI, $\overline{C S}$, SO D_{0} to D_{3} decision level is 80% and 20% of VccD. D_{4} to D_{11} decision level is 80% and 20% of VccA . AO_{1} to AO_{12} decision level is 90% and 10% of VccA .

MB40D001

DATA INPUT/OUTPUT TIMING (Serial Bus Format)

- Timing of D/A Converter Operation, I/O Expander Operation (serial to parallel conversion), and ESR Write Operation.

Data input is enabled at the fall of the $\overline{\mathrm{CS}}$ signal. 16-bit data is input, and executed by shift register command at the rise of $\overline{\mathrm{CS}}$.

In D/A converter operation, analog output selected at the rise of $\overline{\mathrm{CS}}$ is converted. In serial to parallel conversion, digital output selected at the rise of $\overline{C S}$ is converted. In ESR write operation, data is set in the ESR at the rise of [CS] and used to change pin states.

- I/O Expander Operation (parallel to serial conversion)

Data input is enabled at the fall of the CS signal. 16-bit data (parallel to serial conversion command) is input, and commands received at the rise of $\overline{\mathrm{CS}}$. At the fall of $\overline{\mathrm{CS}}$ the data from parallel input is loaded in the shift register from D4 to DF, and output from the SO pin timed to the fall of the CLK signal.

MB40D001

USAGE PRECAUTIONS

1. Preventing Latch-Up

A condition known as "latch-up" may occur when the input or output pins of a CMOS IC device are exposed to voltages higher then $\mathrm{Vcc}_{\mathrm{cc}} \mathrm{D}$ or $\mathrm{Vcc}_{\mathrm{c}} \mathrm{A}$ or lower than $G N D$ voltage, or when voltages are applied to the device in excess of rated values for $V_{c c} D$, $V_{c c A}$, or $V_{d o}$ to GND voltages. Latchup produces a rapid increase in power supply current, and may result in thermal destruction of elements. Users should take sufficient precautions to ensure that absolute maximum ratings are not exceeded at any time during use.

2. Power Supply Pins

The power supply should be connected to the $V_{c c} D, V_{c c} A, V_{d D}$, and $G N D$ terminals of the $I C$ with as low an impedance as possible.
In addition, it is recommended that ceramic capacitors of approximately $0.1 \mu \mathrm{~F}$ be connected as bypass capacitors between the $\mathrm{V}_{c c} \mathrm{D}, \mathrm{V}_{c c} \mathrm{~A}$, and V_{d} terminals and the GND terminals.

ORDERING INFORMATION

Part number	Package	Remarks
MB40D001PFV	24-pin Plastic SSOP (FPT-24P-M03)	

MB40D001

PACKAGE DIMENSIONS

FUJITSU LIMITED

For further information please contact:

Japan

FUJITSU LIMITED
Corporate Global Business Support Division
Electronic Devices
KAWASAKI PLANT, 4-1-1, Kamikodanaka
Nakahara-ku, Kawasaki-shi
Kanagawa 211-8588, Japan
Tel: 81(44) 754-3763
Fax: 81(44) 754-3329
http://www.fujitsu.co.jp/
North and South America
FUJITSU MICROELECTRONICS, INC.
Semiconductor Division
3545 North First Street
San Jose, CA 95134-1804, USA
Tel: (408) 922-9000
Fax: (408) 922-9179
Customer Response Center
Mon. - Fri.: 7 am - 5 pm (PST)
Tel: (800) 866-8608
Fax: (408) 922-9179
http://www.fujitsumicro.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH
Am Siebenstein 6-10
D-63303 Dreieich-Buchschlag
Germany
Tel: (06103) 690-0
Fax: (06103) 690-122
http://www.fujitsu-fme.com/
Asia Pacific
FUJITSU MICROELECTRONICS ASIA PTE LTD
\#05-08, 151 Lorong Chuan
New Tech Park
Singapore 556741
Tel: (65) 281-0770
Fax: (65) 281-0220
http://www.fmap.com.sg/

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.

The information and circuit diagrams in this document are presented as examples of semiconductor device applications, and are not intended to be incorporated in devices for actual use. Also, FUJITSU is unable to assume responsibility for infringement of any patent rights or other rights of third parties arising from the use of this information or circuit diagrams.

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION:

Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.

F0001
© FUJITSU LIMITED Printed in Japan

